Modelación y correlación entre series temporales de ciclos solares y series pluviométricas del extremo sur patagónico

Modeling and correlation between time series of solar cycles and series of rainfall in the southern Patagonian extreme

Oscar Bonfili, Dora Maglione, Julio Soto

Código

ICT-UNPA-188-2018

Resumen


Hay estudios que avalan el hecho de que los cambios climáticos están relacionados con las variaciones que se producen en la emisión de la radiación solar. En particular, existe evidencia de que en ciertas regiones del planeta el número de manchas solares, la cual varía en ciclos de aproximadamente 11 años, influye sobre la precipitación, mientras que en otras regiones ese comportamiento no se verifica. Sin embargo, para la zona sur del continente americano no hay literatura que haya estudiado este comportamiento, por lo que en este trabajo se analizaron las series de precipitaciones para las ciudades de Río Gallegos (Argentina) entre 1928-2015 y para Punta Arenas (Chile) entre 1921-2015 con la finalidad de determinar la posible influencia de la cantidad de manchas solares sobre esta variable. Para llevar adelante este objetivo, en primer término, se modeló el comportamiento de las series usando al variograma para capturar la estructura de correlación temporal de los datos, y posteriormente se calcularon las correlaciones de las series de precipitaciones y las de manchas solares, y la de las precipitaciones y algunos rezagos de las manchas solares para poder determinar la posible asociación entre ambas variables. A partir de los resultados obtenidos del análisis se puede concluir que para esta región del planeta la cantidad de manchas solares no influye sobre la cantidad de lluvia caída.


Palabras clave


Manchas solares; Precipitación; Correlación; Series temporales


Abstract


There are studies that support the fact that climate changes are related to the variations that occur in the emission of solar radiation. In particular, there is evidence that in certain regions of the planet the number of sunspots, which vary in cycles of approximately 11 years, influences rainfall, while in other regions that behavior does not occur. However, for the southern area of the American continent there is no literature that has studied this behavior, so in this work the rainfall series for the cities of Río Gallegos (Argentina) between 1928-2015 and Punta Arenas (Chile) between 1921-2015 were analyzed in order to determine the possible influence of the amount of sunspots over this variable. In order to carry out this objective, the behavior of the series was modeled first using the variogram to capture the temporal correlation structure of the data, and subsequently the correlations of the series of precipitations and those of sunspots were calculated, and that of the precipitations and some lags of the sunspots to be able to determine the possible association between both variables. From the results obtained from the analysis it can be concluded that for this region of the planet the amount of sunspots does not influence the amount of rainfall.


Keywords


Sunspots; Precipitation; Correlation; Temporal series


Área


Cs. Exactas y Naturales

Resolución


1523/18-R-UNPA

Fecha de Aprobación


2018-12-04

Texto completo:

PDF

Referencias


ABBOT, C. G. (1966). Solar Variation, a Weather Element. Proceedings of the National Academy of Sciences of the United States of America, 56(6), 1627–1634. https://doi.org/10.1073/pnas.56.6.1627

ARENAS VAZQUEZ, F., ALIAGA BUSTOS, G., MARCHANT SANTIAGO, C., SANCHEZ ACUÑA, R. (2010). El espacio geográfico Magallánico: Antecedentes acerca de su estructura y funcionamiento. Universidad del Bio Bio Revista Tiempo y Espacio, 25. ISSN 0716-9671.

BAL, S., BOSE, M. (2010). A climatological study of the relations among solar activity, galactic cosmic ray and precipitation on various regions over the globe. Journal Earth Systems Science, 119 (2): 201–209. https://doi.org/10.1007/s12040-010-0015-8

BALDWIN, M., DUNKERTON, T. J., (2005). The solar cycle and stratosphere-troposphere dynamical coupling. Journal of Atmospheric and Solar-Terrestrial Physics, 67: 71-82. https://doi.org/10.1016/j.jastp.2004.07.018

BONFILI, O., SOTO, J., MAGLIONE, D. (2016). Características Generales de los Principales Elementos Climáticos de la Ciudad de Río Gallegos, Congreso Internacional de Geografía – 77º semana de geografía, San Miguel de Tucumán.

CARSLAW, K.S., HARRISON, R.G., KIRKBY, J., (2002). Cosmic Rays Clouds and Climate. Science, 298: 1732-1738. https://doi.org/10.1126/science.1076964

CLAVET, X., ROMERO, M. C., SANCHO, J.M, RIPODAS, P., QUINTERO, V.J., (2001). Relationship between sunspot number and total annual precipitation at Iza-a (Tenerife): Maximum precipitation prediction with three year lagged sunspots?. ArXiv Physics e-prints. Recuperado eprintarXiv:physics/0110083.

HARRISON, R.G., STEPHESON, D.B., (2006). Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proceedings of the Royal Society, 462: 1221-1233. https://doi.org/10.1098/rspa.2005.1628

HATHAWAY, D. H., WILSON, R. M., (2004). What the sunspot record tells us about space climate. Solar Physics, 224: 5-19. https://doi.org/10.1007/s11207-005-3996-8

HELD, I. M. (2012). Issues in Climate Science Underlying Sun/Climate Research. National Research Council. Committee on the Effects of Solar Variability on Earth's Climate. Space Studies Board. Division on Engineering and Physical Sciences.The effects of solar variability on earth’s climate A workshop report. The National Academies Press. Washington, D.C., p. 21.

HIREMATH, K.M., MANJUNATH, H., SOON, W. (2015). Indian summer monsoon rainfall: Dancing with the tunes of the sun. New Astronomy, 35: 8–19. https://doi.org/10.1016/j.newast.2014.08.002

JIMENEZ, J.A.G. (2012). Anillos, clima y actividad solar. Universidad Nacional de Colombia. Tesis para Maestria. Facultad de Ciencias Agrarias, Departamento de Ciencias Forestales.

KASATKINA, E., SHUMILOV, O., LUKINA, N.V., KRAPIEC, M., JACOBY, G. (2007). Stardust component in tree rings. Dendrochronologia, 24: 131-135. https://doi.org/10.1016/j.dendro.2006.10.005

KNIVETON, D.R. (2004). Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. Journal of Atmospheric and Solar Terrestrial Physics, 66: 1135-1142 https://doi.org/10.1016/j.jastp.2004.05.010

LANE, L. J., NICHOLSs, M. H., OSBORN, H. B. (1994). Time series analyses of global change data. Environ. Pollut, 83: 63-68. https://doi.org/10.1016/0269-7491(94)90023-X

LEAN, J., BEER, J., BRADLEY, R. (1995). Reconstruction of solar irradiance since 1610: Implications for climate change. Geophysical Research Letters. 22: 3195-3198. https://doi.org/10.1029/95GL03093

LEGRAS, B., MESTRE, O., BARD, E., YIOU, P. (2010). A critical look at solar-climate relationships from long temperature series.Clim. Past., 6: 745-758, doi:10.5194/cp-6-745-2010. https://doi.org/10.5194/cp-6-745-2010

MAGLIONE, D., SÁENZ, J. L., SOTO, J., BONFILI, O., TALAY, C., SANDOVAL, M., LLANCALAHUEN, M. (2014). Patrones de Comportamiento de Elementos Meteorologicos en Patagonia Sur. Bienal del III Encuentro de Investigadores de la Patagonia Austral – 3° Edición (ISBN 978-987-3714-00-9). Río Turbio, Argentina.

MAUAS, P.J.D., BUCCINO, A.P., FLAMENCO, E. (2010). Long-term solar activity influences on South American rivers. Journal of Atmospheric and Solar-Terrestrial Physics, 73: 377–382. Medellín, Colombia. Cap. II, pp. 39-59.

NAVARRO, M., VILATTE, C., AGUAS, L. (2013). NOAA.The Sunspot Cycle. Boletín Agrometeorológico del Centro Sur de la Provincia de Buenos Aires. Centro Regional de Agrometeorología - U.N.C.P.B.A. v. 1 al 18. Recuperado de http://solarscience.msfc.nasa.gov/SunspotCycle.shtml

MEEHL, G. A. y TENG, H. (2012). Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett. 39, L22705. https://doi.org/10.1029/2012GL053423

NATIONAL RESEARCH COUNCIL (2012). The Effects of Solar Variability on Earth´s Climate: A Workshop Report. Washington, DC: The National Academies Press.

OESCHGER, H., BEER, J., ANDREE, M. (1987). 10Be and 14C in the earth system Philosophycal Transactions of the Royal Society of London Series A Mathematical and Physics Sciences, 323: 45-55.

PALLÉ, E., BUTLER, C., O' BRIEN, K. (2004). The possible connection between ionization in the atmosphere by cosmic rays and low-level clouds. Journal of Atmospheric and Solar-TerrestrialPhysics, 66 (18): 1779-1720. https://doi.org/10.1016/j.jastp.2004.07.041

PEDREROS, M. (2013). Manchas en el sol: ¿lluvias en la tierra?. Publicaciones del Departamento de Física, Universidad de Tarapacá. Vol.17. Recuperado de http://www.uta.cl/charlas/volumen17/Indice/MPedreros.pdf

RASPOPOV, O.M, DERGACHEVB, V.A., KOLSTRO, T., 2004. Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeoclimatic data in high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 209: 127-139. https://doi.org/10.1016/j.palaeo.2004.02.022

ROMEU I CODINA E., y LÓPEZ BUSTIN J.A. (2006). Aproximación a la posible existencia de la se-al de los ciclos solares 18 y 19 en la pluviometría de la península Ibérica. Gepgraphicalia, 49: 19-36.

RONTU CARLON, N., PAPANASTAIOU, D. K., FLEMING, E. L., JACKMAN, C. H., NEWMAN, P. A., BURKHOLDER, J. B. (2010). UV absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) between 210 and 350K and the atmospheric implications. Atmos. Chem. Phys., 10: 6137–6149. https://doi.org/10.5194/acp-10-6137-2010

SELAVARAJ, R. S., ADITA, R. (2012). The solar influence on the monsoon rainfall over Tamil Nadu. J. Ind. Geophys. Union, 16(3): 107-111.

STAGER, J. C., RUZMAIKIN, A., CONWAY, D., VERBURG, P., MASON, P. J. (2007). Sunspots, El Ni-o, and the levels of Lake Victoria, East Africa. Journal Geophysical Research, 112, D15106. https://doi.org/10.1029/2006JD008362

SVENSMARK, H. (1998). Influence of Cosmic Rays on Earth's

Climate, Physical Review Letters, 81: 5027-5030. https://doi.org/10.1103/PhysRevLett.81.5027

SVENSMARK, H., BONDO, T., SVENSMARK, J. (2009). Cosmic rays decreases affect atmospheric aerosols and clouds. GeophysicalResearhLetters, 36: L15101, doi: 10.1029/2009GL038429. https://doi.org/10.1029/2009GL038429

SVENSMARK, H., FRIIS-CHRISTENSEN, E. (1997). Variation of cosmic ray flux and global coverage – a missing link in solar climate relationships. Journal of Atmospheric and solar Terrestrial Physics, 59: 1225-1232. https://doi.org/10.1016/S1364-6826(97)00001-1

TODD, M. C., KNIVETON, D. R. (2004). Short-term variability in satellite derived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol.-Terr. Phy., 66: 1205–1211. https://doi.org/10.1016/j.jastp.2004.05.002

TINSLEY, B. A., YU, F. (2004). Atmospheric Ionization and Clouds as Links Between Solar Activity and Climate, in Pap, Judit M.; Fox, Peter, Solar Variability and its Effects on Climate, 141, American Geophysical Union, 321-339. https://doi.org/10.1029/141GM22

USOSKINn, I.G., SOLANKI, S.K., SCHÜSSLER, M., MURSULA, K., ALANKO, K. (2003). Millenium-Scale sunspot number reconstruction: evidence for an unusually active sun since 1940s. The American Physical Society, 91: 1-4.

YEPES, A., BUKERIDGE, M. (2011). Respuestas de las plantas ante los factores ambientales del cambio climático global (Revisión). Colombia Forestal, 14: 213-232. https://doi.org/10.14483/udistrital.jour.colomb.for.2011.2.a06

ZHAO, L., WANG, J., ZHAO, H. (2012). Solar Cycle Signature in Decadal Variability of Monsoon Precipitation in China. Journal of the Meteorological Society of Japan, 90(1): 1–9. https://doi.org/10.2151/jmsj.2012-101




DOI: http://dx.doi.org/10.22305/ict-unpa.v10i3.286

Enlaces refback

  • No hay ningún enlace refback.




_______________________________________________________________________________

Revista de Informes Científicos y Técnicos de la Universidad Nacional de la Patagonia Austral. © 2009 Todos los Derechos Reservados.
Licencia Creative CommonsEsta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.